Transversals in generalized Latin squares
نویسندگان
چکیده
We are seeking a sufficient condition that forces a transversal in a generalized Latin square. A generalized Latin square of order n is equivalent to a proper edge-coloring of Kn,n. A transversal corresponds to a multicolored perfect matching. Akbari and Alipour defined l(n) as the least integer such that every properly edge-colored Kn,n, which contains at least l(n) different colors, admits a multicolored perfect matching. They conjectured that l(n) ≤ n/2 if n is large enough. In this note we prove that l(n) is bounded from above by 0.75n if n > 1. We point out a connection to anti-Ramsey problems. We propose a conjecture related to a well-known result by Woolbright and Fu, that every proper edgecoloring of K2n admits a multicolored 1-factor.
منابع مشابه
Transversals in Latin Squares: A Survey
A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries containing no pair of entries that share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutuall...
متن کاملTransversals in Latin Squares
A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries such that no two entries share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutually orthogon...
متن کاملOn the number of transversals in latin squares
The logarithm of the maximum number of transversals over all latin squares of order n is greater than n6 (lnn + O(1)).
متن کاملThe number of transversals in a Latin square
A Latin square of order n is an n × n array of n symbols, in which each symbol occurs exactly once in each row and column. A transversal is a set of n entries, one selected from each row and each column of a Latin square of order n such that no two entries contain the same symbol. Define T (n) to be the maximum number of transversals over all Latin squares of order n. We show that bn ≤ T (n) ≤ ...
متن کاملMore mutually orthogonal Latin squares
A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. In this paper we give some constructions of pairwise orthogonal diagonal Latin squares. As an application of such constructions we obtain some new infinite classes of pairwise orthogonal diagonal Latin squares which are useful in the study of pairwise orthogonal diagonal Latin squares.
متن کامل